A comparison of methods for the calculation of NMR chemical shifts
نویسندگان
چکیده
A theory ~MPL! to compute the NMR chemical shifts in condensed matter systems using periodic boundary conditions was presented by F. Mauri, B. Pfrommer, and S. G. Louie @Phys. Rev. Lett. 77, 5300 ~1996!#. The MPL method has been implemented so far within a pseudopotential formulation in which the wave functions are expanded in plane waves. In this paper, we compare analytically the MPL approach within the density functional theory to existing methods for the calculation of the chemical shifts such as GIAO ~gauge-including atomic orbitals!, CSGT ~continuous set of gauge transformations!, and IGAIM ~individual gauges for atoms in molecules!. To this end we apply the MPL approach to molecules since the latter methods are conceived only for finite systems. We show theoretically the equivalence between a variant of the CSGT and the MPL method applied to finite systems. Moreover, we analyze numerically the efficiency of the different methods when atomic orbital basis sets are employed, by comparing the basis-set convergence properties. We find that the CSGT and IGAIM approaches have the same convergence properties as GIAO, whereas their computational time is significantly smaller. In the MPL method, the contribution of the valence electrons to the chemical shift converges rapidly with respect to the size of the basis set, whereas the convergence properties of the core contribution are poor. We improve the convergence by separating the core and the valence contributions in a gauge-invariant manner, by applying the MPL method only to the valence contribution, and by treating the core contribution with IGAIM. The performances of the resulting approach compare favorably with those of the other methods. Finally we find that the core contribution to the chemical shift is independent of the chemical environment, in contrast to what is sometimes found in the literature. In conclusion, our results indicate that, to compute the chemical shifts in both molecules and solids, using atomic orbital basis sets, one could use the MPL method to evaluate the valence contribution and add to it a rigid core contribution as obtained, for instance, from an atomic calculation. © 1999 American Institute of Physics. @S0021-9606~99!30129-X#
منابع مشابه
Ab Initio Calculation 29Si NMR Chemical Shift Studies on Silicate Species in Aqueous and Gas Phase
Nowadays NMR spectroscopy becomes a powerful tool in chemistry because of the NMR chemical shifts. Hartree–Fock theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts of various silicate species in the silicate solution as initial components for zeolite synthesis both in gas and solution phase. Calculations have been performed at geo...
متن کاملTheoretical study of structure spectral properties of Tacrine as Alzheimer drug
Tacrine (9-amino-1,2,3,4-tetrahydroacridine) as a reversible inhibitor of acetylcholinesterase (AChE),was the first drug for the symptomatic treatment of Alzheimer’s disease (AD). NMR structuredetermination still presents some considerable challenges: the method is limited to systems ofrelatively small molecular mass, data collection times are long, data analysis remains a lengthyprocedure, and...
متن کاملAn ab initio quantum chemical investigation of TOMS nmr SHIELDING TENSORS IN Adenine-thymine, Adenine-uracil, Guanine-Cytosine & uracil-quartet: comparison between theoretical and experimental results
We have evaluated the NMR shielding tensors for A:T,G:C,A:U in Watson-crick, and U-quartet. We have computed NMR shielding tensors at B31YP level by using 6-31G(d) basis set. We have compute anisotropy and asymmetry in A:T,G:C,A:U and U-quartet. The NMR shielding tensors were calculated using the GIAO method. The natural bonding orbital analysis (NBO) were performed. NBO calculation have been ...
متن کاملAb Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملNMR and NBO Calculation of Broccoli Calm: Nano Physical Parameter Study
Sulforaphane, an isothiocyanate found in broccoli and other cruciferous vegetables. it is an antioxidantand anti-cancer agent, and reduces blood pressure, and also has anti-allergic Effects.In this article, six theoretical methods have been used for calculation of physical parameters insolforaphane and several similar compounds. We calculated physical parameters like atomic charges.energy (AE) ...
متن کاملA hybrid density functional theory (DFT) and ab initio study of α-Acyloxycarboxamides Derived from Indane-1, 2, 3-trione
α-acyloxycarboxamides are synthesized from three component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H an...
متن کامل